

Coupling of smoke and pedestrian simulation: triggering of crowds by perception of smoke

PhD Students' Seminar on Fire Safety Science 2019 Braunschweig, Germany

Ben Hein

- 1. Introduction
- 2. Underlying experiments and coupling Ansatz
- 3. Visibility framework
- 4. Motivation framework
- 5. Future steps

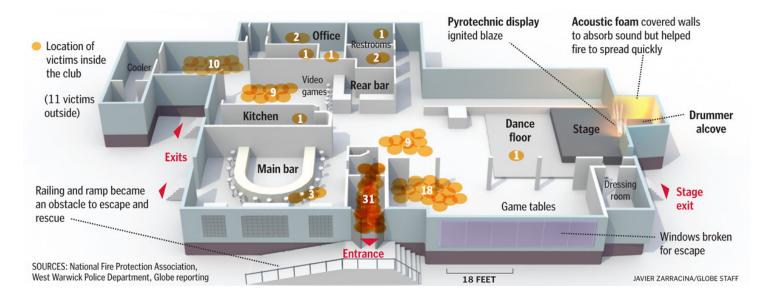
Introduction

"Toxic gases and/or depletion of oxygen in fire smoke are the final causes of death of those victims. However, many evacuees are trapped in an **early stage** of fire by relatively thin smoke, and **loss of visibility** is an indirect but fatal cause of death."

SFPE Handbook of Fire Protection Engineering, 2016

Coupling of smoke and pedestrian simulation Ben Hein | PhD Students' Seminar on Fire Safety Science 2019

4


- big volume buildings (airports, carparks, malls)
 - smoke easily rises
 - smoke exhaustion system fit possible
 - → "smoke-free" evacuation

- casual buildings (hotels, offices, hospitals, clubs)
 - corridors and small compartmentation
 - smoke exhaustion system fit difficult
 - even when in place, not that effective
 - \rightarrow smoke conditions during evacuation

crowd in a competitive behaviour due to a fire scenario

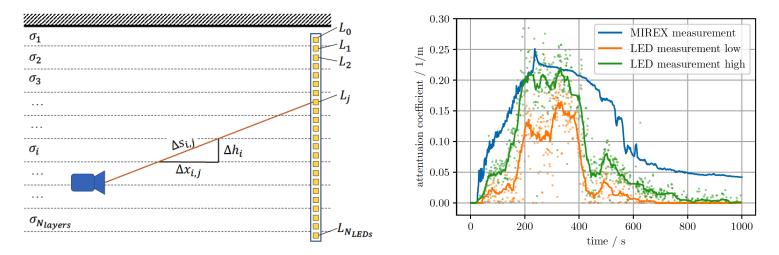
"Traditional ASET/RSET analysis does not couple the fire analysis to the evacuation analysis [...] (but) fire hazards may have a significant impact on the progress of the evacuation (and) this omission may produce significantly optimistic conclusions [...]"

E. Galea, Coupled Fire/Evacuation Analysis of the Station Nightclub Fire, 2009

- fire related factors substantially affect the evacuation dynamics
- new implementations would improve current evacuation models
- Preference for integration of propagating smoke and agent motivation
- application: more extensive analysis of route choice with phenomena like crowding and congestion in front of exits

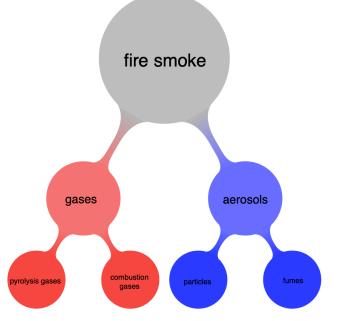
Underlying experiments

Experiments on light extinction


- cooperation with university Duisburg-Essen
- new measurement technique for light extinction in space
- goal: numerical modelling of visibility and analyse impact of type of smoke on visibility

results for TF5 with new measurement technique:

Arnold et al., Spatiotemporal measurement of light extinction coefficients in compartment fires, 2019

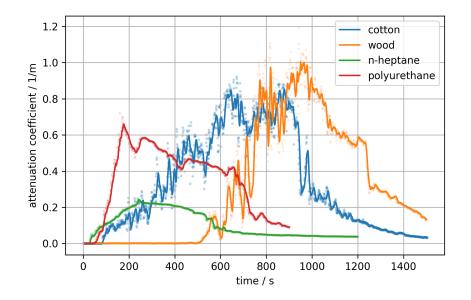

Coupling of smoke and pedestrian simulation Ben Hein | PhD Students' Seminar on Fire Safety Science 2019

10

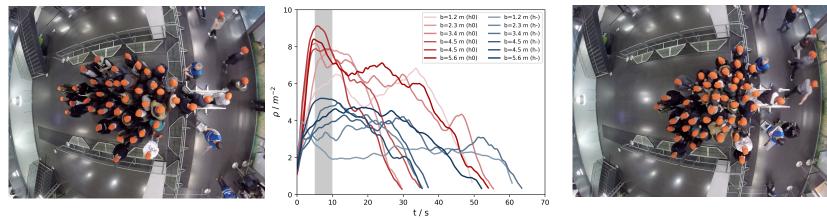
"On the other hand, the characteristics of fire smoke, that is, **composition**, **shape**, **and size of the particles**, depend on the combustible materials involved and the conditions of combustion. These characteristics are also highly **dependent on** surrounding flow and **temperature** fields and **vary with time**."

SFPE Handbook of Fire Protection Engineering, 2016

N. Montreal, Numerische und experimentelle Untersuchung von Brandrauch unter Berücksichtigung von flammenden und nicht-flammenden Verbrennungsvorgängen, 2018


Coupling of smoke and pedestrian simulation Ben Hein | PhD Students' Seminar on Fire Safety Science 2019

Experiments on light extinction


Iocal MIREX measurements during experiments in Duisburg

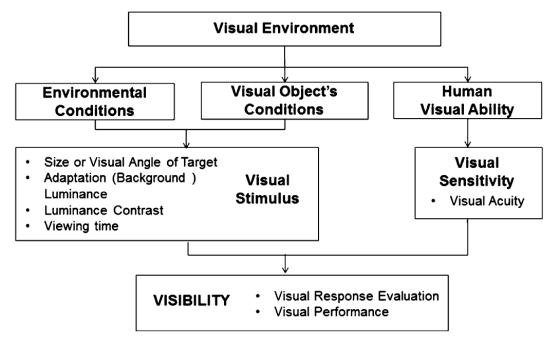
- TF2 (wood): smouldering fire with bright, strong scattering smoke
- TF3 (cotton): smouldering fire with bright, strong scattering smoke
- TF4 (PU): plastic fire with very dark smoke
- TF5 (n-heptane): pool fire with very dark smoke

- variation of corridor width and participants' motivation
- impact on density in front of the exit and queuing or crowding behaviour


J. Adriane et al, Crowding and Queuing in Entrance Scenarios: Influence of Corridor Width in Front of Bottlenecks, 2018

Coupling Ansatz

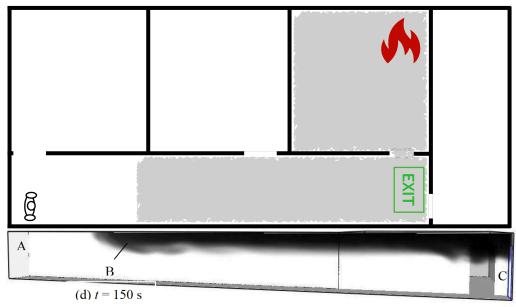
1. reduced visibility of exit signs


- 2. rerouting consequences:
- herding
- familiarity behaviour
- orientation using walls
- 3. irregular usage of exits
- occurrence of crowding due to over-usage
- motivational change (stress, irritating factors)

Visibility framework

SFPE Handbook of Fire Protection Engineering, 2016

simplified version of a mathematical visibility model developed by Jin:


 \boldsymbol{L}

$$V = \frac{L}{\sigma}$$

• strong simplification in visibility factor E: $E = \ln\left(\frac{L_t}{\delta_c \alpha E/\pi}\right)$

- homogeneous smoke conditions: $\sigma = -\frac{1}{\Delta s} \ln \left(\frac{I}{I_0} \right)$
- visibility not direction-dependent

local approach indicates high visibility in this case (zone-model approach)

Y. He, Evaluating Visibility Using FDS Modelling Result, 2009

 K. Kang: visibility on line of sight in 3D but: Δs constant and interpolation, smoke obscuration level (graphical approach), no specific targets

K. Kang, A smoke model and its application for smoke management, $2007\,$

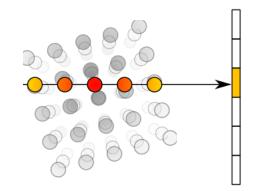
 Y. He: virtual visibility of exit signs variable extinction coefficients as a constant average extinction coefficient -> homogeneous assumption

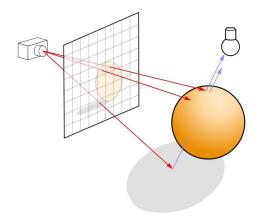
Y. He, Evaluating Visibility Using FDS Modelling Result, 2009

• **B. Schröder:** semi-quantitative approach with smoke factors but: no visibility, 2D (constant extraction height)

B. Schröder et al., Knowledge- and perception-baed route choice in case of fire, 2015

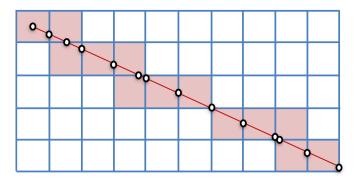
new Ansatz: inhomogeneous smoke conditions


$$T = \frac{I}{I_0} = \exp(-\tau_\lambda) = \exp(-\sigma \cdot \Delta s)$$
$$T = \frac{I}{I_0} = \exp\left(-\int_s \sigma(s) ds\right) = \exp\left(-\sum_{i=0}^{n_{voxels}} \sigma_i \Delta s_i\right)$$

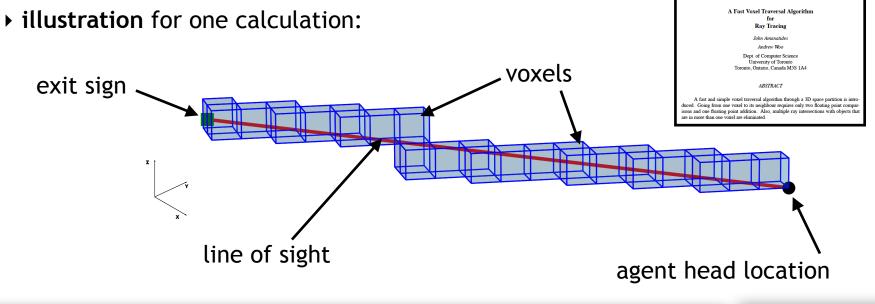

 light attenuation for exit signs for all room positions, agent height and time steps -> grid traversal algorithm needed

Approaches from graphic visualization

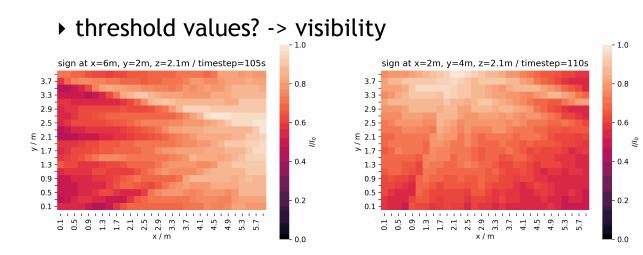
- ray tracing: processes surface data
- ray casting: processes volume data (used in game development, AI, collision detection)

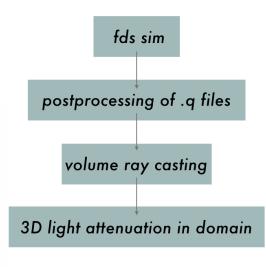


	ray tracing	volume ray casting
output	graphic games	volume visualization
goal	realism	visualize features
rays	N	1

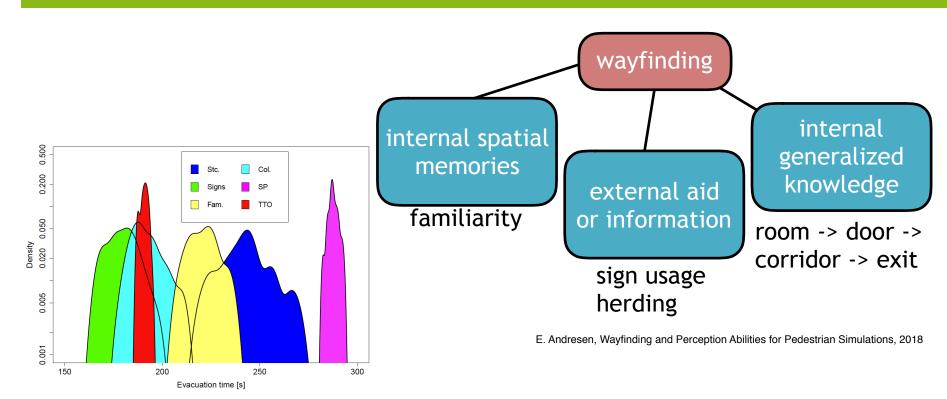


- line rasterization methods: Bresenham, digital differential analyser (DDA)
- regular sampling: uniform steps along ray with Nyquist criteria
- voxel intersection (exact ray casting): all cells with intersection points




• implementation of fast voxel traversal algorithm (by J. Amanatides)

- output as light attenuation maps
- in function of exit sign and height of agent



Coupling of smoke and pedestrian simulation Ben Hein | PhD Students' Seminar on Fire Safety Science 2019

24

Wayfinding strategies

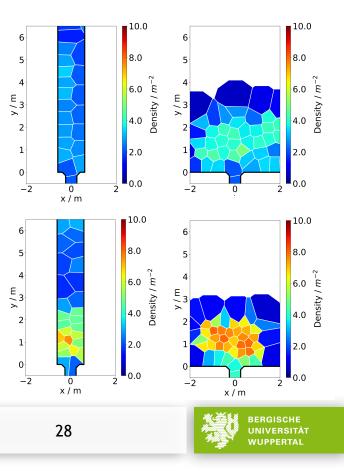
Coupling of smoke and pedestrian simulation Ben Hein | PhD Students' Seminar on Fire Safety Science 2019

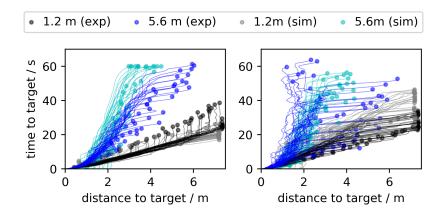
25

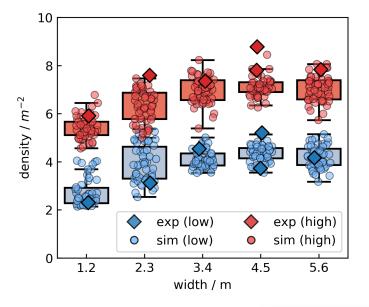
"The smoke concentration affects the exit door selection algorithm. The user gives a threshold visibility value for a door to be considered as a "smoke free" door. A door is usable as long as the visibility is larger than half the distance to the door, where local visibility = 3/extinction coefficient."

Visible	Familiar	Disturbing conditions	
yes	yes	no	black
no	yes	no	yellow
yes	no	no	blue
yes	yes	yes	red
no	yes	yes	green
yes	no	yes	magenta
no	no	no	cyan
no	no	yes	cyan
	yes no yes yes no yes no	yesyesnoyesyesnoyesyesnoyesyesnoyesnonono	yesyesnonoyesnonoyesnoyesnonoyesyesyesnoyesyesyesnoyesnonoyes

Fire Dynamics Simulator with Evacuation: FDS+Evac Technical Reference and User's Guide, 2017

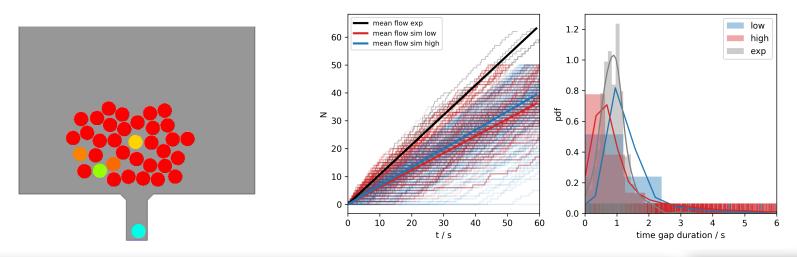

Motivation framework


Modelling approach for motivation framework

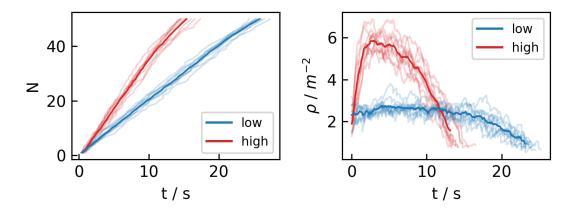

- simplified velocity-based model
- influence of corridor width modelled by desired direction
- motivation variation in function of agent size and time gap (contraction time scale)

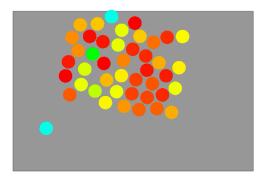
$$\dot{\mathbf{x}}_{\mathbf{i}} = V\left(s_i\left(\mathbf{x}_i, \mathbf{x}_j, \dots\right)\right) \times \mathbf{e}_i \qquad \mathbf{e}_i = \frac{\mathbf{e}_0 + \xi}{N}$$
$$V\left(s_i\right) = \min\left\{v_0, \max\left\{0, \left(s_i - l\right)/T\right\}\right\}$$

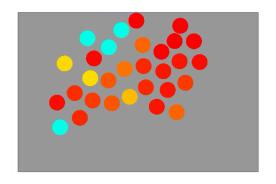
- Iarger corridor widths and higher motivation lead to higher densities
- comparable time/distance plots
- √agreement with experimental data



flow validation not possible


related to clogs which occur in the specific validation case





Case study: flow and density

- higher density for higher motivation
- higher flow for higher motivation
- averaged results for 10 runs:

Coupling of smoke and pedestrian simulation Ben Hein | PhD Students' Seminar on Fire Safety Science 2019

31

Next steps

- provide a clear coupling **routine** between both frameworks
- analyse variations in dynamics (route choice analysis)
- change exit capacities by adapting signs (placement, size, etc.)
- analyse safety thresholds such as density in front of exits, FED, etc.

Coupling of smoke and pedestrian simulation Ben Hein | PhD Students' Seminar on Fire Safety Science 2019

34

